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LIQUID CRYSTALS, 1993, VOL. 14, No. 6, 1635-1644 

Molecular model for cholesteric polymers including 
biaxiality and chain flexibility 

by L. VARICHON* and A. TEN BOSCH 
Laboratoire de physique de la matihre condenste, U.A. CNRS No. 190, 

Parc Valrose, 06018 Nice Cedex2, France 

A mean field theory for cholesteric polymers based on the elastic model is 
presented. The effect of flexibility and the biaxial order and nematic order 
parameters are studied. The biaxial order and nematic order parameters are 
increasing functions of chirality and vary slightly with flexibility. Biaxiality is shown 
to be important for the transition temperature and the cholesteric pitch as well as 
the latent heat of transition. 

1. Introduction 
The literature devoted to biaxial liquid crystals is extensive [l-31. It has been 

shown that biaxiality becomes important near the isotropization temperature [4-51 
and measures of biaxial order are a way to determine the possibility of a blue phase [6]. 
But, because of the difficulty of interpretation of deuterium NMR spectral patterns, 
measurements are very rare 117-81. Nevertheless two conclusions arise: biaxiality 
increases with increasing temperature and decreasing pitch length and the mechanism 
for biaxiality is almost entirely a consequence of the anisotropy of the orientational 
distribution along the molecular axis rather than due to the helical texture of 
cholesterics [9]. Some molecular theories have been proposed [1&12] and as 
emphasized by Gelbart [13], these models are based upon the particular interaction 
deemed to be dominant: (i) attractive forces of dispersion (for example Ma'ier-Saupe 
[14]); (ii) repulsive steric forces (for example Onsager [IS], Flory [16]); or (iii) a 
combination of both where the dominant interaction depends on temperature (for 
example Alben [17]). At least two deficiencies have been found to explain the poor 
quantitative agreement with experimental results: the breakdown of the mean field 
concept and the effect of flexibility. One way to take into account the rigidity is to deal 
with the continuum elastic chain model [18] widely used for polymers [19-241 and 
recently for liquid crystalline polymers [25-281. We report the conjugate effects of 
flexibility and biaxiality on the usual order parameters S2, S, and on the transition 
temperature in a thermotropic system. And we predict the possibility for the biaxiality 
to become zero without affecting the pitch behaviour. 

2. Molecular field theory for rigid rods 
Considering uniaxial molecular symmetry and a chiral interaction only, the 

simplest potential that gives a cholesteric structure with order parameters S,, S, and A 
is [29-311. 

b(rlZ)+ v2(r12)p2(a1 'a2)+(r12 a2)(v1(r12)p1(~1  v3p3(a1 

(1) 
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1636 L. Varichon and A. ten Bosch 

where P,, m = 1 , 2 3 3  are the Legendre polynomials, Q is a unit vector indicating the 
molecular orientation, and r12 is a unit vector joining the centres of gravity of molecules 
1 and 2. Coupling between orientation and position are not required by symmetry 
arguments and will be neglected here. 

In a second order term in the virial expansion, the Helmholtz free energy for the one 
particle distribution function F(f(Q,r), p ,  T), can be derived as [32] 

+ p k T  f ( r ,  Q) In 417f(r2, Q,) dr dQ, (2) s 
with p = N / V ;  the average number density. 

position 
We introduce the usual second and fourth order parameter tensor dependent on 

35 s QaQPQyQ, 

30 
8 

3 
8 

--(QaQ,GyI + 5 distinct index permutations) 

+ -(hupdyc + 2 distinct index permutations) 

It is now straightforward to express more conveniently the three anisotropic 
intermolecular contributions in the free energy development. 

It is possible to express the traceless symmetric tensor Qas(r) in a position dependent 
coordinate system E(r) = {I(r), m(r), n(r)) characteristic of the cholesteric structure in 
which the diagonal elements: Qaa= {Sxx, Syv, S,,] are position independent. We will 
consider that biaxiality is dominantly contained in Qa,(r), so Qasyr(r) will be taken to be 
dependent on 8 only. E(r) does not diagonalize QaByS(r), but each component can be 
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Molecular model for cholesteric polymers 1637 

expressed in terms of Q,,,,. Then, for a macroscopic pitch P defined along the x axis, in 
the ideal cholesteric representation [33] 

I(r) = (1,0,0); m(r) = (0, cos xh, sin xh); n(r) = (0, = sin xh, cos xh) and P = 2n /h  

the orientational part of the free energy can be rewritten as 

F 
N 
-= kT(ln4nf), drVZ(r)[S~,+(S~,+S~,)cosZ hx+2S,,S,,sinZ hx] 

[(S,,-S,,)Zxsin2hx] 

and in the limit of the long wavelength (hx<< l), we obtain finally 

21 
(6) 

F 
N 

with the density energy expressions of ‘nematic’ types A and B of chiral contributions C 
and D 

B = - - p  V,(r)x2 dr, 4 I A = - p V,(r) dr, s 
and the definition of the order parameters 

S,, = S ,  = f(il)P,(cos 8) dR, s 
S,, - S,, = A = f(R) - sin2 8 cos 24 d o ,  s i  

(7) 

Q Z Z Z Z  = S4 = f(R)P4(cos 0) d n ,  J s 
where A is the measure of the biaxiality of the system, and S ,  and S ,  are the usual 
nematic order parameters. 

Minimization of the interactions with respect to h yields for an equilibrium value for 
the inverse of the pitch 

S ,  +- 
h, = 

B 2 (9) 
which reintroduced in the free energy expansion gives 
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1638 L. Varichon and A. ten Bosch 

By minimization of the functional free energy with respect to f(a) and taking into 
account the normalization condition, 

we obtain the mean field potential expression 

V,,(d,+)= - P ~ ( c o s ~ )  

[ ; 32s ( P)] 3 .  
2 

- - s in26cos2~ A-+-Chl Ch2 S , + -  

with coefficients 

C h l = C + D  l + - a ( T ) ,  Ch2=C+D l - - a ( T ) ,  ( :: ) ( 2f ) 
where temperature dependence is realized through the ratio of order parameters a( T )  

2 

a(T)= ~ ( s2:;) ’ 

We find two characteristic values when Chl and Ch2 become zero. The first case is the 
classical one which has been reported previously [34-371: when chiral contributions C 
and D are close, but with opposite sign, then it could happen that at a certain critical 
temperature Chl cancels, the pitch diverges and the handedness of the macroscopic 
helix changes. Moreover we have verified that A becomes zero and changes sign as well 
at the transition, like the pitch. This is due to the mean field approximation for 
cylindrically symmetric molecules, where biaxiality for a nematic is not allowed [2]. 
More interesting is the case where Ch2 becomes zero: the pitch is not affected, but A can 
become zero again. It can be noticed that because the ratio of the order parameters is a 
decreasing function with temperature, Chl and Ch2 cannot cancel simultaneously for 
two specified chiral interactions C and D when the temperature changes. Calculations 
on this phenomenon and on the order parameter S, are currently in progress. 

3. Functional integral description of flexible molecules 
Liquid crystalline polymers possess some conformational flexibility due to the 

cumulative effect of internal vibrations, bond bending and degrees of freedom. In the 
continuum elastic chain model, a chain is characterized by its bending constant IC and 
the extended chain length L. The end to end distribution function for a single chain in 
the mean field approximation can be expressed in a functional integral representation. 
~ 2 7 1  
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Molecular model for cholesteric polymers 1639 

This model neglects end effects [38] and assumes slow variations on the atomic scale. 
G(R’, R(s); s) satisfies a Schrodinger-like equation 

A, + V&(R) G(m, R; 0, S )  = 6(R - R)~(s). 
6s 2pic 1 

The curvilinear abscissa s playing the role of an imaginary time, G(R’,R(s); s) is 
analogous to the space-time propagator for a particle in an external field [39] and can 
be expanded in eigenfunctions $An, s) 

and ICI1(R, s) can always be developed in spherical harmonics when decoupling in R and 
s is true 

= C r:( “Yy(R) exp ( - Ejs) 
I r n  

Calculation of order parameter A implies m being not always equal to zero. 
Flexibility can be estimated by the ratio L/q, where q, the persistence length, 

indicates the correlation length of two tangent vectors R(s) and R(t) when s and t 
describe distances along the chain (40) 

In an isolated polymer molecule, q is given by pic [l8]. 

one obtains a secular equation 
When inserting the cholesteric mean field (12) in the diffusion-type equation (14), 

where Ark”, a real square syametric matrix of dimension (21 + l),, aj and r:( rn are given 
in the Appendix. 

With a sufficient number of spherical harmonics (at least 7 when considering S ,  or 
both S 2  and S4 and S ,  when we consider A), calculation of eigenvectors r)”’ and 
eigenvalues uj allows us to solve numerically the self-consistent system constituted by 
the three order parameter equations (8). 

4. Results and discussion 
When the chiral interaction of second order D is small compared to the other 

interaction terms, then the pitch is almost constant with temperature. In this case we 
report some new results implying flexibility effects. When we solve the self-consistent 
system, the physical behaviour is determined by the values of kTclALand at the 
transition with 

P 2  
L, 

& --. 
‘ - A B  

From equation (7), an approximation, using a Lennard-Jones-like potential, yields 
B=r:A where r, is an intermolecular length. Thus we have only two independent 
parameters: A and C. In the visible range, the magnitude of can be estimated to be 
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1640 L. Varichon and A. ten Bosch 

lov5 ,  consistent with estimations made from values of the twist elastic constant [ll]. 
But in the following, we will see that must be much greater than this estimated value 
so that the chiral part becomes significant compared to the nematic behaviour. One 
possible interpretation of this discrepancy could be that fluctuations should be 
collective and should be scaled by the number of correlated molecules [ll]. Another 
explanation could be that chiral contribution D, as previously shown, can be very close 
to C [31,37] and cannot be dropped from equation (9). Then taking D = K ,  we 
estimate 

When 1 approaches - 1, 
Because we have no information on the exact magnitude of A, B and C we will 

assume that they are in a constant ratio, whatever is the chain rigidity given by the ratio 
L/q. Then, we verify that biaxiality increases with chirality and decreases slightly with 
the rigidity until it reaches a plateau (see figure 1). The order parameter S, decreases 
with chirality and reaches a minimum which is a function of chirality. This minimum 
takes place at lower rigidity when the chirality increases (see figure 2). The fluctuations 
observed for high chirality are due to numerical precision which has to be very 
important when chirality is not a small perturbation. The ratio of order parameters 
confirms that the effect of flexibility is small with respect to L/q. The effect of 
temperature is given (see figures (3-5)): the ratio A/S2 decreases less with T/T,  than 
reported [9], especially close to the transition, and we see that flexibility at a given 
chirality does not play an important role even though it reduces the ratio of the order 
parameters and decreases slightly the effects of temperature (the slopes in figure 4 are 
more sensitive to temperature than those in figure 5). 

The ratio kTJAL implying both energy term and length (we cannot isolate just one 
of these two variables) increases with chirality (see figure 6). When is not negligible, 
we add a strong contribution to the dominant A in the mean field potential; the 

can reach values reported for numerical calculations. 

'I 

* ,001 ' 0 1 1  

.oO01 ' ..."..I - '.."'.' ' ' ' " A  - 
.0001 ,001 .01 . I  1 10 100 

UCl 

Figure 1. Evolution of the biaxial order parameter A, at  the transition temperature, with chain 
rigidity L/q (L, total chain length contour; q, persistence length) for different chiralities. A is 
an increasing function of the chirality e l  and varies slightly with flexibility. For a given 
the minimum of A increases with decreasing biaxiality. +, e l  =0.0022; m, e l  =0023; A, 

=0.183; 0, el =0.6445. 
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\ *??-A 
------- ---**' * \  

---------- 
i- I 

.1 * 
.0001 .001 .01 .1 1 10 100 

us 
Figure 2. Evolution ofthe order parameter S,,  at the transition temperature, with chain rigidity 

for different chiralities. The behaviour of S ,  is essentially affected when c1 increases. When 
= 0.6445, chirality is not a perturbation and the self-consistent system is more sensitive 

to numerical precision. +, =00022; D, g1=0023; A ,  el=0.183; 0, E~ =0.6445. 

I F  

.1 i======== 

.om1 
0.8 0.9 1 .o 

Trr, 
Figure 3. Evolution of the ratio of order parameters A/S,, with reduced temperature for 

=0023; A, different chiralities for rod-like molecules (L/q = +, e l  =0.0022; m, 
=0.183; 0, c1 =0.6445. 

'I 

I 
.01' I I 

0.8 0.9 1.0 

Trr, 
Figure 4. Evolution of the ratio of order parameters A/S,, with reduced temperature for 2 

different high chiralities when flexibility is zero (L/q = in the intermediate range 
of flexibility (L/q= l), and for flexible molecules (L/q=50). m, =0.6445, L/q= lo-'; +, 
cl=0.6445, L/q=l;  X ,  c1=0-6445, L/q=50; 0, cI=O-f83, L/q=10-7; ., ~ ~ = 0 . 2 8 3 ,  
L/q= 1; 0, E ,  =0.183, L/q=50. 
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1642 L. Varichon and A. ten Bosch 

.01 

A 
s; 

,001 

.ooO1 
0.8 0.9 1.0 

Trr ,  
Figure 5. Evolution of the ratio of order parameters A/S2, with reduced temperature for 2 

different low chiralities when flexibility changes. m, E~ =0.023, L/q= lo-'; +, E ,  =0-023, 
L/q= 1; x ,  =0.023, L / q = 5 0  0,  z1 -0,0022, L/q= lo-'; D, E~ =0.0022, L/q= 1; 0, 
E l  = 0.0022, L/q = 50. 

,001 l n w n k d  
* * . ' a * - '  - ' ".".' - 

.0001 .001 .01 . I  1 10 loo 
us 

Figure 6. Evolution of the ratio kT,/AL for the transition temperature T,, for different 
chiralities. When E ,  increases we allow the uniaxial nematic structure to show a biaxial 
behaviour. 0, E~ =0-6445; A, c1 =0183; D, =0.023; +, .sl =0-0022. 

TD 1.5 

1.0 

0.5 
,0001 ,001 .01 .1 1 10 loo 

us 
Figure 7. Evolution of' the ratio TJT: for different chiralities, where T,* is the transition 

temperature at zero chirality. The ratio T,/T,* is almost a constant function of flexibility. 
0, E~ =0.6445; A, E~ =0.183; FJ, E~ =0.023; +, ~~=0.0022.  
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I '  , I I 
0.001 0.20 1 0.401 0.601 0.801 

CZ - 
AB 

Figure 8. Evolution of the differential of entropy between the isotropic and the anisotropic 
phases for rod-like molecules with chirality E ~ .  

consequence is to lower, for a negative contribution, and to increase, for a positive 
contribution, the ratio kTJAL. We observe that the transition temperature increases 
with increasing biaxiality, but remains constant with chain flexibility (see figure 7). We 
also calculate the differential orientational entropy at the transition between the 
isotropic and the anisotropic phases in the limit of high rigidity (see figure 8). 

Siso - Sanis0/Nk decreases with chirality which indicates that the system can reach a 
second order phase transition when increases. This is in good agreement with other 
theories [ 12,171. 

Appendix 
With the help of the recurrence relation for spherical harmonics defined in [41] for 

example, the components AYi" are easily obtained with the following relation: 

A;fifl = {dau.l(d, $)( C [I(l+ 1)- c2 cos2 8 - cq cos4 0 - cd sin2 0 cos 24): rn r ( 0 , $ )  
I ,  rn 

with coefficients 

and energy terms 

100 D 
4-21  B 

E ---ChlS+ 
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1644 Molecular model for cholesteric polymers 

The eigenvalues are 

uj= --Ej-pl+-qc, "," 4 ' I  
where A, B, C,  D are the basic energy contributions defined in (7). 
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